Force on a current carrying conductor

Consider a conductor of length 1 is placed perpendicular to the magnetic field of induction B. Magnetic field is perpendicular to the plane of the paper. Let i be the current flowing through the conductor in time t (as shown in the figure).

We know that the force F acting on a charge q in motion with velocity V is given by

But

or

$$F = q(V \times B)$$

$$F = q(\frac{l}{t} \times B)$$

$$F = \frac{q}{t}(l \times B)$$

$$\frac{q}{t} = i \text{ current}$$
So
$$F = i(l \times B)$$
or
$$F = Bil Sin\theta$$

Torque on a current carrying loop

×

Consider a loop P Q R S of length 1 and breadth b carrying current i and it is placed in a uniform magnetic field of induction B.

PQ = RS = 1and PS = QR = b

As the sides PQ and RS are perpendicular to the field B.

The forces acting on each side PQ & RS is F = Bil

current in these two edges are in × The opposite direction. So these two forces are in opposite direction and constitute a couple or torque.

Let θ be the angle between the magnetic field B and the normal drawn to the plane of the loop.

Then torque is given by $\tau =$ Force X Perpendicular distance

$$\tau = Bil \cdot b Sin \theta \quad \text{or} \quad \tau = Bi(l \cdot b) Sin \theta$$

$$\tau = Bi A Sin \theta \quad \because l.b = A = Area of$$

the loop.

If the loop or coil has N no. of turns, then the torque is given by

This principle is used in moving coil galvanometer or ballistic galvanometer.

Substituting the values of $r \& Sin \theta$ in eqn. (1)

P.S. BRAHMA CHARY M.Sc., M.Phil.

Page 2

Magnetic induction on the axis of a circular loop carrying current

х

Consider a circular coil of radius 'a' carrying current 'I'. Let P be a point where the magnetic induction is to be measured. It is on the axis of the coil at distance 'x' from the centre of the coil. A dI B

dB cos o

Consider a small element AB of length dl in the coil and it is at a distance r from the point P. The angle between dl and r is $\theta = 90^{\circ}$.

Then the magnetic induction dB due to the element dl at p is given by Biot- Savart's law.

$$dB = \frac{\mu_o}{4\pi} \frac{i \, dl \, Sin 90^0}{r^2} = \frac{\mu_o}{4\pi} \cdot \frac{i \, dl}{r^2}$$

The angle between r and axis of the coil is ϕ .

 $a: \theta$

B

A

dB

 $d\mathbf{B}\sin\phi$

 $d\mathbf{B}'$

 \overline{dB} is in perpendicular direction to the plane containing \overline{r} and \overline{dl} . This vector \overline{dB} can be resolved into two perpendicular components, one (dB sin ϕ) along axis and the other (dB cos ϕ) perpendicular to the axis.

- > Take another element A^1B^1 in the coil diametrical opposite to AB. The magnetic induction dB at P due to this element A^1B^1 can also be resolved into two perpendicular components.
- > The component along the axis (dB sin ϕ) can be added to the previous one. But the component perpendicular to the axis (dB cos ϕ) is quite opposite to the previous perpendicular component & they cancel each other.
- Like this, the resultant perpendicular component comes out as zero and only the component along the axis exists.

Magnetic induction along the axis $B = \int dB \sin \phi$

$$B = \frac{\mu_0 i}{4\pi r^2} \int dl \sin \phi$$

$$B = \frac{\mu_0 i}{4\pi r^2} \int dl \cdot \left(\frac{a}{r}\right) \qquad \because \sin \phi = \left(\frac{a}{r}\right)$$

$$B = \frac{\mu_o ia}{4\pi r^3} \int dl \,. \tag{1}$$

 $\int dl = 2\pi a =$ Circumference of the coil.

From figure $r = (a^2 + x^2)^{1/2}$

Substituting eqn. (2) in eqn. (1)

$$B = \frac{\mu_o \, i \, a}{4\pi (a^2 + x^2)^{3/2}} \, x \, 2\pi a = \frac{\mu_o \, i \, a^2}{2(a^2 + x^2)^{3/2}}$$

B =

If the coil has N no. of turns. Then

 $\frac{1}{2}$ This is along the axis of the coil.

Case 1:- At the centre of the coil x = 0

$$B = \frac{\mu_o N \ i \ a^2}{2a^3} = \frac{\mu_o N \ i}{2a}$$

μ_oNia

 $2(a^2+x^2)^{3/2}$

Case 2:- At far away from the centre of the coil $x >> a \& (a^2 + x^2)^{3/2} \approx x^3$

$$B = \frac{\mu_o N i a^2}{2x^3}$$
Magnetic induction due to solenoid

Consider a solenoid of length 'l' carrying current 'i' and its radius is 'a'. The total no. of turns is 'N' and number of terms per metre is 'n'. So n = N/l

Here three different cases arise 1) Field at inside point. 2) Field at an axial endpoint. 3) Field at the centre of the solenoid of finite length

$$_{
m Page}4$$

P.S. BRAHMA CHARY M.Sc., M.Phil.

Page **J**

 $B = \mu_0 n i$ 2) For the field at one axial end of solenoid of infinite length, the limits are $\theta_1 = 0$ and $\theta_2 = \pi/2$ $B = \frac{\mu_0 n i}{2} [\cos 0 - \cos \pi/2] \quad \text{(or)} \quad B = \frac{\mu_0 n i}{2} [1 - (0)]$ $B = \frac{\mu_0 n i}{2}$

3) For the field at the centre of solenoid of finite length,

Let 'l' be the length of the solenoid and the distance from the centre on either side is 1/2.

Substituting these cosine values in eqn. (3)

$$B = \frac{\mu_{o} n i}{2} \left[\frac{l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} - \frac{-l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} \right]$$

$$B = \frac{\mu_{o} n i}{2} \left[\frac{l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} + \frac{l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} \right]$$

$$B = \frac{\mu_{o} n i}{2} \left[\frac{2l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} \right]$$

$$B = \left[\frac{\mu_{o} n i l}{\left\{4a^{2} + l^{2}\right\}^{1/2}} \right]$$

$$B = \left[\frac{\mu_{o} N i}{\left\{4a^{2} + l^{2}\right\}^{1/2}} \right]$$

$$\therefore nl = N$$

Courtesy: P.S.Brahmachary Lecturer in Physics

$$_{\text{Page}}6$$